
Apache License, Version 2.0

Copyright © 2025 The Apache Software Foundation,
Licensed under the Apache License, Version 2.0

Well-Formed vs Valid

1

Malformed

DFDL Parse Fails

Can't create any
XML

Well-Formed

DFDL Parse Succeeds

XML is Created

Valid

XML Schema Facet
Constraints Hold

Schematron Rules
Pass

Correct

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Apache License, Version 2.0

Copyright © 2025 The Apache Software Foundation,
Licensed under the Apache License, Version 2.0

▪ Malformed Data
• DFDL Parse fails - we cannot even create XML from the data

▪ Well-Formed Data
• Can find every field's location and length
• Can convert each field to its logical type
• DFDL Parse can succeed
• Can create XML from the data
• But note: This XML may not be valid

▪ Valid Data
• Obeys schema constraints (facets, Schematron rules)

▪ Range of numbers, dates, times, patterns of text
• Validation usually done by separate filter step or steps, not the DFDL Parser

▪ Correct Data
• All applications run without issues.

2

Well-Formed vs Valid

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Apache License, Version 2.0

Copyright © 2025 The Apache Software Foundation,
Licensed under the Apache License, Version 2.0

Well-Formed vs. Valid
▪ Well-Formed

• can determine start position and length
• bits are convertible to the expected simple type

▪ Valid
• Schema Valid - data obeys facets and max/min occurs
• Schematron Valid - data obeys additional rules

▪ Parsing should accept well-formed data
▪ Parsing should reject malformed data (important)

• It's easy to write a DFDL schema that accepts well-formed and lots of malformed data also.
• Must design the schema to reject malformed as well as accept well-formed data.

▪ Parsing should not reject invalid data
• Why? - Forensics: so you can look at the invalid data!

▪ Without this you can't even see the data - you can't parse it into memory
• Second why: Composition properties

▪ DFDL assumes a backtracking parser.
▪ Use of dfdl:checkConstraints(.) function will cause backtracking to try other alternatives when data is well-

formed (just invalid)

3

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Apache License, Version 2.0

Copyright © 2025 The Apache Software Foundation,
Licensed under the Apache License, Version 2.0

Avoid using dfdl:checkConstraints()
▪ dfdl:checkConstraints(.) escalates XSD facet check failures into DFDL

parse errors

▪ Proper uses: To check facets that are associated with well-formed data.
▪ Example 1: data has 3 kinds of records encoded by a single-character

code which must be A, F, or Q.
• If the code is not one of those, it's an error and you can't parse the data
• Express this as XSD enumeration facets
• Use dfdl:checkConstraints(.) so the parse fails if the A, F, or Q are not found.

▪ Example 2: data has a length or count (array number of items) field
which is 32 bits, but the maximum value is 9999. Longer lengths or
larger counts cannot be represented.
• Express this as a maxInclusive facet on an unsigned int type.
• Use dfdl:checkConstraints(.) to ensure the length/count is not excessive.

4

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Apache License, Version 2.0

Copyright © 2025 The Apache Software Foundation,
Licensed under the Apache License, Version 2.0

Parse Errors vs. "Fail Fast" approach
▪ You should not use DFDL parse errors as a 'fail fast' way to

reject invalid data.
▪ Why? Composition properties: A DFDL parse error doesn't

'fail' the parse, it causes backtracking to other alternatives
of the parse.

▪ If you didn't write those other parts of the schema (e.g.,
because your schema is being used as a component in a
larger schema) it is unclear what this backtracking will
cause, but it is almost certainly not 'failing fast'.

▪ Often you will get 'left over data' problems, if the parse
succeeds up to the invalid data.

5

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Apache License, Version 2.0

Copyright © 2025 The Apache Software Foundation,
Licensed under the Apache License, Version 2.0

Avoid dfdl:checkConstraints

6

▪ Look at simple type "longitude_degrees" below.
▪ Forcing parsing to only succeed on valid data (-180 to 180) turns out to be a mistake.

<simpleType name="longitude_degrees"
 dfdl:binaryFloatRep="ieee"
 dfdl:lengthKind="implicit">

 <annotation><appinfo source="http://www.ogf.org/dfdl">

 <!--

 bad idea. Don't do this to check valid values of numbers.

 These numbers are well formed even if out of range.

 Turn on Daffodil's validation, or use a separate validator process.

 -->
 <dfdl:assert>{ dfdl:checkConstraints(.) }</dfdl:assert>
 </appinfo></annotation>
 <restriction base="xs:float">
 <minInclusive value="-180.0"/>
 <maxInclusive value="180.0"/>
 </restriction>
</simpleType>

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Apache License, Version 2.0

Copyright © 2025 The Apache Software Foundation,
Licensed under the Apache License, Version 2.0

Avoid using dfdl:checkConstraints()

▪ If you are just validating the data, turn on Daffodil
validation, and test for validation errors at end of parse.
• validation 'limited' (or 'daffodil', meaning built-in) is done

efficiently by Daffodil as it traverses the data
• validation 'full' (or 'xerces') outputs XML and calls Xerces to

validate it. This is less efficient.

7

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Apache License, Version 2.0

Copyright © 2025 The Apache Software Foundation,
Licensed under the Apache License, Version 2.0

Unparsing
▪ In dfdl:outputValueCalc expressions, accept any value that is

well-formed, not only valid values.
▪ Why?

• Allows generation of invalid data for testing
• Symmetry with parsing - what the parser can create, the unparser

should be able to serialize back

▪ Exception: Reject Elements
• Schemas can be designed to tolerate bad data and create reject

elements
▪ Especially for large file formats where failing to parse the whole file on

one bad data item may be undesirable.
• Reject elements should be designed to always be invalid

8

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

	Slide 1: Well-Formed vs Valid
	Slide 2: Well-Formed vs Valid
	Slide 3: Well-Formed vs. Valid
	Slide 4: Avoid using dfdl:checkConstraints()
	Slide 5: Parse Errors vs. "Fail Fast" approach
	Slide 6: Avoid dfdl:checkConstraints
	Slide 7: Avoid using dfdl:checkConstraints()
	Slide 8: Unparsing

