Well-Formed vs Valid

¥*

THE

ASF

Valid

XML Schema Facet
Constraints Hold

Schematron Rules
Pass

Copyright © 2025 The Apache Software Founaatror;
Licensed under the Apache License, Version 2.0

Well-Formed

DFDL Parse Succeeds

XML is Created

& Daffodil

Malformed

DFDL Parse Fails

Can't create any
XML

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Well-Formed vs Valid ® Daffodil

= Malformed Data
. DFDL Parse fails - we cannot even create XML from the data

= Well-Formed Data
« Canfind every field's location and length
« Can convert each field to its logical type
« DFDL Parse can succeed
« Can create XML from the data
« But note: This XML may not be valid

= Valid Data

« Obeys schema constraints (facets, Schematron rules)
= Range of numbers, dates, times, patterns of text
« Validation usually done by separate filter step or steps, not the DFDL Parser

= Correct Data
« All applications run without issues.

THE
y A S F Copyright © 2025 The Apache Software Foundation,
‘ Licensed under the Apache License, Version 2.0

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Well-Formed vs. Valid ® Daffodil

= Well-Formed
e can determine start position and length
- bits are convertible to the expected simple type
= Valid
- Schema Valid - data obeys facets and max/min occurs
« Schematron Valid - data obeys additional rules

= Parsing should accept well-formed data

= Parsing should reject malformed data (important)

« It's easy to write a DFDL schema that accepts well-formed and lots of malformed data also.
« Must design the schema to reject malformed as well as accept well-formed data.

= Parsing should not reject invalid data

« Why? - Forensics: so you can look at the invalid data!

= Without this you can't even see the data - you can't parse it into memory
« Second why: Composition properties

= DFDL assumes a backtracking parser.

= Use of dfdl:checkConstraints(.) function will cause backtracking to try other alternatives when data is well-
formed (just invalid)

THE
y A S F Copyright © 2025 The Apache Software Foundation,
‘ Licensed under the Apache License, Version 2.0

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Avoid using dfdl:checkConstraints() ® Daffodil

dfdl:checkConstraints(.) escalates XSD facet check failures into DFDL
parse errors

Proper uses: To check facets that are associated with well-formed data.

Example 1: data has 3 kinds of records encoded by a single-character
code which must be A, F, or Q.

« If the code is not one of those, it's an error and you can't parse the data
« Express this as XSD enumeration facets
« Use dfdl:checkConstraints(.) so the parse fails if the A, F, or Q are not found.

Example 2: data has a length or count (array number of items) field
which is 32 bits, but the maximum value is 9999. Longer lengths or
larger counts cannot be represented.

« Express this as a maxInclusive facet on an unsigned int type.

« Use dfdl:checkConstraints(.) to ensure the length/count is not excessive.

THE
y Copyright © 2025 The Apache Software Foundation,
‘ A S F Licensed under the Apache License, Version 2.0

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Parse Errors vs. "Fail Fast" approach ® Daffodil

= You should not use DFDL parse errors as a 'fail fast' way to
reject invalid data.

= Why? Composition properties: A DFDL parse error doesn't
'fail' the parse, it causes backtracking to other alternatives
of the parse.

= If you didn't write those other parts of the schema (e.q.,
because your schema is being used as a componentin a
larger schema) it is unclear what this backtracking will
cause, but it is almost certainly not 'failing fast'.

= Often you will get 'left over data' problems, if the parse
succeeds up to the invalid data.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Avoid dfdl:checkConstraints

. Look at simple type "longitude_degrees" below.
. Forcing parsing to only succeed on valid data (-180 to 180) turns out to be a mistake.

<simpleType name="longitude degrees"
dfdl:binaryFloatRep="ieee"
dfdl:lengthKind="implicit">

<!--
bad idea. Don't do this to check valid values of numbers.

These numbers are well formed even if out of range.

Turn on Daffodil's validation, or use a separate validator process.

-->
<dfdl:assert>{ dfdl:checkConstraints(.) }</dfdl:assert>

<restriction base="xs:float">
<minInclusive wvalue="-180.0"/>
<maxInclusive value="180.0"/>
</restriction>
</simpleType>

s THE
y S Copyright © 2025 The Apache Software Foundation,
. A F Licensed under the Apache License, Version 2.0

&

APACHE

Daffodil

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Avoid using dfdl:checkConstraints() ® Daffodil

= If you are just validating the data, turn on Daffodil
validation, and test for validation errors at end of parse.
- validation 'limited' (or 'daffodil', meaning built-in) is done
efficiently by Daffodil as it traverses the data

- validation 'full' (or 'xerces') outputs XML and calls Xerces to
validate it. This is less efficient.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Unparsing ® Daffodil

= In dfdl:outputValueCalc expressions, accept any value that is
well-formed, not only valid values.

= Why?
« Allows generation of invalid data for testing

. SKmmetry with parsing - what the parser can create, the unparser
should be able to serialize back

= Exception: Reject Elements

« Schemas can be designed to tolerate bad data and create reject
elements

= Especially for large file formats where failing to parse the whole file on
one bad data item may be undesirable.

« Reject elements should be designed to always be invalid

THE
y A S F Copyright © 2025 The Apache Software Foundation,
‘ Licensed under the Apache License, Version 2.0

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

	Slide 1: Well-Formed vs Valid
	Slide 2: Well-Formed vs Valid
	Slide 3: Well-Formed vs. Valid
	Slide 4: Avoid using dfdl:checkConstraints()
	Slide 5: Parse Errors vs. "Fail Fast" approach
	Slide 6: Avoid dfdl:checkConstraints
	Slide 7: Avoid using dfdl:checkConstraints()
	Slide 8: Unparsing

