
Apache Daffodil™ Extension for Visual Studio Code
The Apache Daffodil™ Extension for Visual Studio Code is an extension to the Microsoft® Visual Studio Code (VS Code) editor which enables Data Format Description Language (DFDL) syntax highlighting, code completion, and the interactive debugging of DFDL Schema parsing operations using Apache Daffodil™.
DFDL is a data modeling language used to describe file formats. The DFDL language is a subset of eXtensible Markup Language (XML) Schema Definition (XSD). File formats are rich and complex-- it requires a modeling language to describe them. Developing DFDL Schemas can be challenging, requiring a lot of iterative development, and testing.
The purpose of Apache Daffodil™ Extension for Visual Studio Code is to ease the burden on DFDL Schema developers, enabling them to develop high-quality, DFDL Schemas, in less time. VS Code is free, open source, cross-platform, well-maintained, extensible, and ubiquitous in the developer community. These attributes align well with the Apache Daffodil™ project and the Apache Daffodil™ Extension for Visual Studio Code.
Table of Contents
· Apache Daffodil™ Extension for Visual Studio Code
· Table of Contents
· Bundled Tools in the Apache Daffodil™ Extension for Visual Studio Code
· DFDL Syntax Highlighting
· DFDL Schema Code Completion
· Addition of Intellisense Hover Capability
· Daffodil Data Parse Debugger
· Data Editor
· Daffodil Test Data Markup Language (TDML)
· Prerequisites
· Installing the Apache Daffodil™ Extension for Visual Studio Code
· Option 1: Install the Apache Daffodil™ Extension for Visual Studio Code From the Visual Studio Code Extension Marketplace
· Option 2: Install the Latest .Vsix File From the Apache Daffodil™ Extension for Visual Studio Code Release Page
· Introductory Guide
· DFDL Schema Authoring Using Code Completion
· Automatic DFDL File Detection
· DFDL Schema Authoring Features
· Debugging a DFDL Schema Using the Apache Daffodil™ Extension for Visual Studio Code’s Bundled Daffodil Data Parse Debugger
· Debug Configuration
· Dropdown for Log Level
· Root element and namespace auto suggestions/finding
· Launch a DFDL Parse Debugging Session
· Other Options for Launching a DFDL Parse Debugging Session
· Setting Breakpoints in the schema
· Custom DFDL Debugger Views
· Infoset Tools
· Inputstream Hex Viewer
· DFDL Command Panel
· TDML Support
· Data Editor
· Navigation
· Keyboard Shortcuts
· Known Issues in v1.4.1
· General Issues
· Debugger Issues Originating from 1.4.0
· Reporting Problems and Requesting New Features
· Getting Help
· Contributing
· Additional Resources
Bundled Tools in the Apache Daffodil™ Extension for Visual Studio Code
DFDL Syntax Highlighting
DFDL is rich and complex. Developers using modern code editors expect some degree of built-in language support for the language they are developing, and DFDL should be no different. The Apache Daffodil™ Extension for Visual Studio Code provides syntax highlighting to improve the readability and context of the text. In addition, the syntax highlighting provides feedback to the developer indicating the structure and code appear syntactically correct.
DFDL Schema Code Completion
The Apache Daffodil™ Extension for Visual Studio Code provides code completion, also known as “Intellisense”, offering context-aware code segment predictions that can dramatically speed up DFDL Schema development by reducing keyboard input, memorization by the developer, and typos.
Addition of Intellisense Hover Capability
Hovering over a DFDL schema element will provide information about that DFDL element. [image: https://github.com/apache/daffodil-vscode/assets/72815523/40f7cec0-2d02-439e-83be-99f02b689f21]
Daffodil Data Parse Debugger
The Apache Daffodil™ Extension for Visual Studio Code provides a Daffodil Data Parse Debugger which enables the developer to carefully control the execution of Apache Daffodil™ parse operations. Given a DFDL Schema and a target data file, the developer can step through the execution of a parse line by line, or until the parse reaches some developer-defined location, known as a breakpoint, in the DFDL Schema. What is particularly helpful is that the developer can watch the parsed output, known as the "infoset", as it’s being created by the parser, and see where the parser is parsing in the data file-- enabling the developer to quickly discover and correct issues, improving DFDL Schema development and testing cycles.
Data Editor
The Apache Daffodil™ Extension for Visual Studio Code provides an integrated data editor. It is akin to a hex editor but tuned specifically for challenging Daffodil use cases. As an editor designed for Daffodil developers by Daffodil developers, features of the tool will evolve quickly to address the specific needs of the Daffodil community.
Daffodil Test Data Markup Language (TDML)
The Apache Daffodil™ Extension for Visual Studio Code provides TDML support. TDML is a way of specifying a DFDL schema, input test data, and expected result or expected error/diagnostic messages, all self-contained in an XML file. By convention, a TDML file uses the file extension .tdml, or .tdml.xml.
TDML files can be included for inquiries about DFDL's inner workings. For example, when uploading files to the Daffodil users mailing list, it may be easier to upload a zip file containing a TDML file, the DFDL Schema file, the input data file, and, optionally, the infoset file. Sending this file to the users mailing list will allow other users to unpack your zip file and run your test case. It becomes even easier if you have multiple test cases. It allows for a level of precision that is often lacking, but also often required when discussing complex data format issues. As such, providing a TDML file along with a bug report is the best way to demonstrate a problem. You can read more about TDML on the Apache Daffodil™ website.
Prerequisites
This guide assumes VS Code and a Java Runtime Environment (Java 8 or greater) are installed.
· Install VS Code, version 1.82.0 or greater
· Install Java Runtime 8 or greater
· On Linux, glibc 2.31 or greater is required
Installing the Apache Daffodil™ Extension for Visual Studio Code
The Apache Daffodil™ Extension for Visual Studio Code can be installed using one of two methods.
Option 1: Install the Apache Daffodil™ Extension for Visual Studio Code From the Visual Studio Code Extension Marketplace
The Apache Daffodil™ Extension for Visual Studio Code is available in the Visual Studio Code Extension Marketplace. This option is recommended for most users.
Option 2: Install the Latest .Vsix File From the Apache Daffodil™ Extension for Visual Studio Code Release Page
The latest .vsix (the file extension used for VS Code extensions) file can also be downloaded from the Apache Daffodil™ Extension for Visual Studio Code releases page and installed by either:
· Using the command-line via code --install-extension <path-to-downloaded-vsix-file>; or
· Use the "Extensions: Install from VSIX" command from within VS Code by opening the Command Palette (Mac = Command+Shift+P, Windows/Linux = Ctrl+Shift+P), and typing vsix to bring up the command and pointing it at the downloaded .vsix file.
Introductory Guide
For beginners that are new to the extension, please read our introductory guide to quicky get started using the extension.
DFDL Schema Authoring Using Code Completion
Automatic DFDL File Detection
The extension will automatically detect files with the DFDL Schema extension dfdl.xsd and set the editor window to dfdl mode in the bottom right of the status bar.
DFDL Schema Authoring Features
Auto-suggest is triggered using CTRL + space or typing the beginning characters of an item. Typing one or more unique characters will further limit the results.
📝 NOTE: Intellisense is context aware, so there is no need to begin a block with <, just start typing the tag name, and code completion will automatically handle it as appropriate.
Code completion can be used to add a schema block, with just a couple of keystrokes. Code completion can make short work out of completing a DFDL Format Block, offering context-sensitive suggestions for attribute and element values.
The > or / characters close XML tags. Use tab to select an item from the dropdown and to exit double quotes.
Code completion supports creating self-defined dfdl:complextypes and dfdl:simpleTypes.
The tab key completes an auto-complete item within an XML tag. After auto-complete is triggered, typing the initial character or characters will limit the suggestion results. Inside an XML tag a space or carriage return will trigger a list of context-sensitive attribute suggestions.
XPath expressions can be code-completed.
Debugging a DFDL Schema Using the Apache Daffodil™ Extension for Visual Studio Code’s Bundled Daffodil Data Parse Debugger
Debug Configuration
Debugging a DFDL Schema needs both the DFDL Schema to use and a data file to parse. Instead of having to select the DFDL Schema and the data file each time from a file picker, a "launch configuration" can be created, which is a JSON description of the debugging session.
To create the launch profile:
1. Before proceeding to the next steps, ensure you have opened a desired working directory. Select File -> Open Folder from the VS Code menu bar. This will allow you to select a desired working directory.
1. Select Run -> Open Configurations from the VS Code menu bar. This will load a launch.json file into the editor. There may be existing configurations, or it may be empty.
1. Press Add Configuration... and select the Daffodil Debug - Launch option.
Once the launch.json file has been created it will look something like this
{
 "type": "dfdl",
 "request": "launch",
 "name": "Ask for file name",
 "program": "${command:AskForProgramName}",
 "stopOnEntry": true,
 "data": "${command:AskForDataName}",
 "infosetOutput": {
 "type": "file",
 "path": "${workspaceFolder}/infoset.xml"
 },
 "debugServer": 4711
}
This default configuration will prompt the user to select the DFDL Schema and data files. If desired, the "program" and "data" elements can be mapped to the user's files to avoid being prompted each time.
📝 Note: Use ${workspaceFolder} for files in the VS Code workspace and use absolute paths for files outside the workspace.
{
 "type": "dfdl",
 "request": "launch",
 "name": "DFDL parse: My Data",
 "program": "${workspaceFolder}/schema.dfdl.xsd",
 "stopOnEntry": true,
 "data": "/path/to/my/data",
 "infosetOutput": {
 "type": "file",
 "path": "${workspaceFolder}/infoset.xml"
 },
 "debugServer": 4711
}
Dropdown for Log Level
A dropdown list has been added in the launch config wizard under Log Level settings. There are four different options to select including DEBUG, INFO, WARNING, ERROR, and CRITICAL.
· Debug - A log level used for events considered to be useful during software debugging when more granular information is needed
· Info - An event happened, the event is purely informative and can be ignored during normal operations
· Warning - Unexpected behavior, but key features still works
· Error - One or more functionalities not working as expected
· Critical - Key feature not working, preventing whole program from working
[image: https://github.com/user-attachments/assets/baefb26f-3441-4088-8f36-ed35961d2a30]
Referenced Links:
· https://sematext.com/blog/logging-levels/
· https://www.crowdstrike.com/en-us/cybersecurity-101/next-gen-siem/logging-levels/
Root element and namespace auto suggestions/finding
In the launch.json file, there's a new suggestion mode that gives you suggestions to fill in for the rootname. If you specify the specific schema path, and then save the file, and reopen it. Go to rootname and delete whatever value is set-- it will show you various suggestions.
[image: https://github.com/user-attachments/assets/87bc8f11-4e6d-4410-979d-5e27bcdb4c7e]
Launch a DFDL Parse Debugging Session
Using the launch profile above a DFDL parse: My Data menu item at the top of the Run and Debug pane (Command-Shift-D) will display. Then press the play button to start the debugging session.
In the Terminal, log output from the DFDL debugger backend service will display. If something is not working as expected, check the output in this Terminal window for hints.
The DFDL Schema file will also be loaded in VS Code and there should be a visible marking at the beginning where the debugger has paused upon entry to the debugging session. Control the debugger using the available VS Code debugger controls such as setting breakpoints, removing breakpoints, continue, step over, step into, and step out.
Other Options for Launching a DFDL Parse Debugging Session
· Option 1:
· Open the DFDL Schema file to debug
· From inside the file open the Command Palette (Mac = Command+Shift+P, Windows/Linux = Ctrl+Shift+P)
· Once the command Palette is opened start typing Daffodil Debug:
· Option 1 = Daffodil Debug: Debug File - This will allow the user to fully step through the DFDL Schema. Once fully completed, it will produce an infoset to a file named SCHEMA-infoset.xml which it then opens as well.
· Option 2 = Daffodil Debug: Run File - This will run the DFDL Schema, producing the infoset to a file named SCHEMA-infoset.xml.
· Option 2:
· Open the schema file to debug
· Click the play button in the top right, two options will be provided:
· Option 1 = Debug File - This will allow the user to fully step through the schema (WIP). Once fully completed, it will produce an infoset to a file named SCHEMA-infoset.xml which it then opens as well.
· Option 2 = Run File - This will run the DFDL Schema, producing the infoset to a file named SCHEMA-infoset.xml which it then opens as well.
Setting Breakpoints in the schema
If you want to be able to set breakpoints in the schema file, make sure that the language mode is set to DFDL. If not, it will not allow you to set breakpoints in the file. To change the language mode, click on the language on the bottom right where DFDL is, and the command palette will allow you to select various languages.
[image: https://github.com/user-attachments/assets/6eaeecaa-1f16-4cd8-b6d7-c60cd01a2838]
Note that not all lines in the schema a valid breakpoints. It is suggested that you experiment with setting multiple breakpoints until you become familiar with which points in the schema will actually halt operation of the parser. Getting VSCode to ignore attempts to set breakpoints in invalid locations is targeted as a future enhancement.
Notes on Debugging Operation
The code being executed within Daffodil is a parser that it constructed based upon the provided schema. There is not a one-to-one correspondence between the schema structure and that of the parser. This means that there is not a one-to-one correspondence between the lines in the schema and what Daffodil executes when the user asks the debugger to “step”.
There will be instances where the “step” does not result in movement of the indicator showing current location within the schema or a change of position within the data file being parsed. This is similar to, but more exaggerated than, debugging high-level source code compiled with optimization enabled.
The very first step is one which seems to produce no changes. However, if you are looking at the view of the temporary infoset file, you can see that it actually gets populated with some initial data from this step operation.
Additionally, when the parser determines that the current path is incorrect, it will backtrack. In these cases, data may be removed from the infoset file and the positions marked in both the schema and data files may move backwards.
Some smaller schemas or data files may parse very quickly, causing a user to not realize that anything has be processed. The best way to avoid this is to ensure your configuration has "Stop on Entry" set.
Depending on the user's configuration here are some things to look for that indicate file parsing has occurred:
Pop-up window in bottom right corner showing that the infoset file was written.
Tab on right side of window showing temporary infoset file was created & deleted:
Custom DFDL Debugger Views
Infoset Tools
Find the infoset tools from the command menu (Mac = Command+Shift+P, Windows/Linux = Ctrl+Shift+P)
DFDL-Variable Display
DFDL Variables defined in the schema can be viewed in the VSCode panel, however, the user must expand the correct view to make them visible. They are located under the title "Schema" and divided by whether or not their name includes a namespace.
Inputstream Hex Viewer
Find the hex view from the command menu (Mac = Command+Shift+P, Windows/Linux = Ctrl+Shift+P)
DFDL Command Panel
Enhanced Debugging in Visual Studio Code (VS Code) by developing a dedicated command panel for DFDL. Now, all debugging-related commands are conveniently grouped in one place, making them easier to find and use. This command panel dynamically updates to only show relevant commands based on the current debug mode and can be quickly executed using a play button.
[image: https://github.com/user-attachments/assets/52165b90-3dd5-495b-8b86-bd15b4f960a1]
TDML Support
When uploading files to the mailing list, it may be easier to upload a zip file containing a TDML file, the DFDL Schema file, the input data file, and, optionally, the infoset file. Sending this file to the mailing list will allow other users to unpack your zip file and run your test case. It becomes even easier if you have multiple test cases.
To Generate a TDML file, use similar steps for Launching a DFDL Parse Debugging Session:
· Open the DFDL Schema file
· From inside the file, open the Command Palette (Mac = Command+Shift+P, Windows/Linux = Ctrl+Shift+P)
· Once the Command Palette is opened, select the Daffodil Debug: Generate TDML command
· From there, you will be asked to provide the input data file, the TDML test case name, the TDML test case description, and the location/name for the TDML file.
Configure launch.json to generate a TDML file. [image: https://github.com/apache/daffodil-vscode/assets/72815523/e81a3b1d-00d2-4c47-95d6-7aa11ba7b340]
Run the debug extension, and choose a dfdl schema and data file. Make sure the language mode is DFDL. [image: https://github.com/apache/daffodil-vscode/assets/72815523/ca016de7-1223-45f9-aefe-82f4bf214741]
Press the continue button to produce the infoset. [image: https://github.com/apache/daffodil-vscode/assets/72815523/ac864cd6-0476-4f1e-a1cf-4e819b92e7d5]
When the infoset generates, a temporary TDML schema will generate. [image: https://github.com/apache/daffodil-vscode/assets/72815523/13d530bb-f630-460b-8050-558d9bb587df]
Once the Daffodil Parse has finished, an infoset and a TDML file will be created. The TDML file contains relative paths to the DFDL Schema file, input data file, and infoset file. When creating an archive for these files, preserve the directory structure in the archive.
Close all windows except the DFDL schema window. Click “Copy TDML File” in the dropdown.
[image: https://github.com/apache/daffodil-vscode/assets/72815523/60d2f50e-763e-474d-b231-1e1a4fd75eee]
Enter a name for the TDML file, click “Save TDML File.
[image: https://github.com/apache/daffodil-vscode/assets/72815523/89408741-e28e-459c-bf98-a9ca373230cf]
Close the DFDL schema in the editor window. Click the explore tab to verify file is in project folder.
[image: https://github.com/apache/daffodil-vscode/assets/72815523/850b7203-8ef6-465e-80a3-f79ea518f263]
To Append a new test case to an existing TDML file, use similar steps for Generating a TDML file:
· Open a TDML file
· From inside the file, open the Command Palette (Mac = Command+Shift+P, Windows/Linux = Ctrl+Shift+P)
· Once the Command Palette is opened, select the Daffodil Debug: Append TDML command
· Or select the Append TDML option at the top right of window
· From there, you will be asked to provide the input data file, the TDML test case name, the TDML test case description, and the TDML file
· The Append option will append the TDML from the temp directory to the currently open TDML if the two files are different
To append to the existing TDML file, open the TDML file and click the button in the upper right corner to open in a text editor.
[image: https://github.com/apache/daffodil-vscode/assets/72815523/1da7930e-7967-41c9-a5c4-7b79f004f7c4]
Change the test case name and save the file. [image: https://github.com/apache/daffodil-vscode/assets/72815523/dbf12109-c0e3-43c8-80e4-7ac235d3f9c3]
Select append from the TDML dropdown menu at the upper right. [image: https://github.com/apache/daffodil-vscode/assets/72815523/03554254-6d83-4974-ae4f-5f1844a73dfe]
The original default test case from the temp directory will be appended to the saved TDML file with the renamed new test case. [image: https://github.com/apache/daffodil-vscode/assets/72815523/ab3b4983-cc0d-46a4-b2cd-dc1c50afaa00]
Once the Daffodil Parse has finished, an infoset will be created, and a test case will be added to the existing TDML file. The TDML test case name OR description can be shared between test cases, but no two test cases should share TDML test case names and descriptions. To create an archive for a TDML file with multiple test cases, the same guidelines for creating an archive from a TDML file created from a 'Generate TDML' operation should be followed. All DFDL schema files, input data files, the TDML file, and, optionally, the infosets should be added to the archive. Additionally, any directory structure should be preserved in the archive to allow for the relative paths in the TDML file to be resolved.
When running a zip archive created by another user, extract the archive into your workspace folder. If there is an infoset in the zip archive that you wish to compare with your infoset, make sure that the infoset from the zip archive is not located at the same place as the default infoset for the Daffodil Parse that will be run when executing a test case from the TDML file. This is because the Daffodil Parse run by executing the TDML test case uses the default location for its infoset and will overwrite anything that already exists there.
To Execute a test case from a TDML file, use the following steps:
· Open a TDML file
· From inside the file, open the Command Palette (Mac = Command+Shift+P, Windows/Linux = Ctrl+Shift+P) '
· Once the Command Palette is opened, select the Daffodil Debug: Execute TDML command or select Execute TDML for the dropdown menu
· From there, you will be asked to select TDML test case name, and TDML test case description
Click on the explore tab to display the file view. Select a TDML file. [image: https://github.com/apache/daffodil-vscode/assets/72815523/652a3e45-fcf8-4dca-b206-32cd8d40b40e]
After the TDML file opens, select the “Execute TDML” option from the dropdown. [image: https://github.com/apache/daffodil-vscode/assets/72815523/b1b82a81-6866-44c4-b89b-4d1c235c87a5]
Quickly select a test case and description. [image: https://github.com/apache/daffodil-vscode/assets/72815523/2418ce3e-d5ed-4168-8551-c5295e717928]
The DFDL schema and a new infoset will utilize the values from the TDML file. [image: https://github.com/apache/daffodil-vscode/assets/72815523/a85b2ce5-5e27-42aa-ad23-0c35f1356759]
A Daffodil Parse will then be launched. The DFDL Schema file and input data file to be used are determined by the selected test case in the TDML file. Optionally, the infoset generated from this parse can be compared to an infoset included in the zip archive containing the TDML file.
Data Editor
This version of the Apache Daffodil™ Extension for Visual Studio Code includes a new Data Editor. To use the Data Editor, open the VS Code command palette and select Daffodil Debug: Data Editor.
A notification message will appear that informs where the Data Editor logged to. If problems occur, check this log file.
Once the extension is connected to the server, the bottom left corner of the Data Editor shows the version of the Ωedit™ server powering the editor, and the port it's connected to. Hovering over the filled circle shows the CPU load average, the memory usage of the server in bytes, the server session count, the server uptime measured in seconds, and the round-trip latency measured in milliseconds.
After selecting a file to edit, there will be a table with controls at the top of the Data Editor.
The first section of the table is called File Metrics and it contains the path of the file being edited, its initial size in bytes [Disk Size], the size as the file is being edited [Computed Size], and the detected Content Type. When changes are committed, the Save button will become enabled, allowing the changes to be saved to the file. The Redo and Undo buttons will redo and undo edit change transactions. The Revert All button will revert all edit changes since the file was opened. The Profile button will open the Data Profiler and allow profiling of all or a portion of the edited file.
The Data Profiler allows for byte frequency profiling of all or a section of the file starting at an editable start offset and ending at an editable end offset, or an editable length of bytes. The offsets and lengths will use the chosen Address Radix. The frequency scale can be either Linear or Logrithmic. The graph can have either an ASCII overlay that appears behind the graph, or None for no overlay behind the graph. Hover over the bars to see the byte frequency and value. The frequency data can be downloaded as a Comma Separated Value (CSV) file using the Profile as CSV button. Click anywhere outside the Data Profiler to close it.
📝 Note: The maximum length of bytes profiled in this version is capped at 10,000,000 (10M).
The second section of the table is called Search, and it allows for seeking a desired offset and searching of byte sequences in the given Edit Encoding in the edited file. The Seek input box uses the selected Address Radix as the seek radix. If the Edit Encoding can be case-insensitive, a Case Insensitive toggle (located inside the Search input box) will be displayed allowing for that option to be enabled. The found sequences can be examined using the First, Prev, Next, and Last buttons in this section. The search can be canceled using the Cancel button.
Found sequences can also be replaced in the given Edit Encoding by filling in a replacement sequence and clicking the Replace... button.
The third section of the table is called Settings, and it allows for setting the Display Radix, Edit Encoding, and Editing modes.
The Display Radix can be one of Hexadecimal, Decimal, Octal, or Binary, and will affect the bytes displayed in the Physical viewport.
The Edit Encoding can be one of Hexadecimal, Binary, ASCII (7-Bit), Latin-1 (8-bit), UTF-8, or UTF-16LE and will affect the selected bytes being edited in the Edit viewport.
In Single Byte Edit Mode, individual bytes may be deleted, inserted (to the left or the right of the selected byte), and overwritten in the Single Byte Edit Window that appears when a byte in the Physical or Logical viewports is clicked.
Mouse over the buttons of the Ephemeral Edit Window to determine what each button does. Mouse over the Input Box and it will show the byte offset position in the Address Radix selected radix. Buttons will become enabled or disabled depending on whether there is valid input in the Input Box. Values entered in the Input Box must match the format set by the byte Display Radix when editing bytes in the Physical viewport or be in Latin-1 (8-bit ASCII) format when editing bytes in the Logical viewport.
When clicking on a single byte in either the Physical or Logical viewports, the Data Inspector will populate giving the value of the byte in Latin-1, and various integer formats for the selected endianness. The Data Inspector will also show the byte offset position in the Address Radix selected radix. The values in the Data Inspector are editable by clicking on the value and entering a new value.
In Multiple Byte Edit Mode, a segment of bytes is selected from either the Physical or Logical viewports, then the selected segment of bytes is edited in the Edit viewport using the selected Edit Encoding.
Now changes are made in the selected Edit Encoding.
When valid changes have been made to the segment of bytes in the Edit viewport, the Apply button will become enabled.
Once editing of the selected segment is completed and is valid, the Apply button is pressed, and the edited segment replaces the selected segment. As with changes made in Single Byte Mode, changes in Multiple Byte Edit Mode are also applied as edit transactions that can be undone and redone.
Byte addresses can be expressed in hexadecimal, decimal, or octal. The selected Address Radix is also what is used entering an offset into the Offset input and for offsets and length in the Data Profiler. If an offset is entered in the Offset input and the Address Radix is changed, the offset will automatically be converted into the selected radix.
The Data Editor supports light and dark modes. The mode is determined by the VSCode theme. If the VSCode theme is set to a light theme, the Data Editor will be in light mode. If the VSCode theme is set to a dark theme, the Data Editor will be in dark mode.
Navigation
The Data Editor can be navigated using the mouse or keyboard.
Clicking on the File Progress Indicator Bar will navigate to the position in the file that corresponds to the position clicked.
Below the File Progress Indicator Bar are a series of buttons that allow for navigating the file. The Home button will take you to the beginning, the Page Up button will take you to the previous page, the Page Down button will take you to the next page, and the End button will take you to the end. The Line Up button will take you to the previous line, and the Line Down button will take you to the next line.
Keyboard Shortcuts
The following keyboard shortcuts are available in the Data Editor:
For any input box, including the input box for Single Byte Editing Mode, ENTER will submit the input, and ESC will cancel the input.
When using Single Byte Editing Mode, CTRL-ENTER will insert a byte to the left of the selected byte, SHIFT-ENTER will insert a byte to the right of the selected byte, and DELETE will delete the selected byte.
When browsing the data in the Physical or Logical viewports, Home will take you to the top of the edited file, End will take you to the end of the edited file, Page-Up will give you the previous page of the edited file, Page-Down will give you the next page of the edited file, Arrow-Up will give you the previous line of the edited file, and Arrow-Down will give you the next line of the edited file.
Known Issues in v1.4.1
General Issues
· Some nightly tests are still failing intermittently due to GitHub runners.
· TDML Copy, Execute, and Append Functionality is currently not working on the MacOS Platform
Debugger Issues Originating from 1.4.0
· At this time the debugger step into and step out actions have no code behind them, using either button results in an unrecoverable error. We have not found a way to disable the step into and step out buttons. This problem occurs in all Operating Systems. This is noted as a GitHub Issue.
Reporting Problems and Requesting New Features
If problems are encountered or new features are desired, create a GitHub Issue and label the issue as appropriate. Be sure to include as much information as possible for us to fully understand the problem and/or suggestion.
Getting Help
If additional help or guidance on using Daffodil and its tooling is needed, please engage with the community on mailing lists and/or review the archives.
Contributing
If you would like to contribute to the project, please look at Development.md for instructions on how to get started.
Additional Resources
· Apache Daffodil™ Extension for Visual Studio Code Wiki
· Apache Daffodil Repository

rId101.png

rId104.png
X Fle B 51> T ¢ 1 O O Temnal Hep € 2 otension Development Hos sampieirspace Dooo - x
ovionen wstant AgpenaToML
 oren eormons st Open n e or
X © sttt
o [£ 0 & TDML Test Cases
© vscode
0 launchjson
o= TestCaseName TetCaseModel TestCaseDesciption DataDocuments atdintosets
> globatlogging Defot Test Case A\ VES20s0urcereposampleW Generated by DFDL VSCode A\ VEs20sourceepolisampleW A\ VE320sourcelrepor\sampleW
S orkspacelpngidosd Extension orkspocelgoogiesng orkspace\targetinfoseLami
> sreams
> tsktempdectory
0 infeseson
> infosetml
aafod debuggeriog
daatdtor 000log
datEitor 900010 2024..
= googlepng
5 prg-infosetami
» prgofdizsd
prg ddsdong
» testinfosetam
5 estdidsd
oumT T oesuaconsous pmosuews Datostsenger ++ 0 8 = ~ X
2]
edariabies"0 "value: false", "type" bool”, ariablesheference” e, nasedVor ables” 9, "indexedVariables™:0), ("mame” “occursinde)
X, "value” 1", variablesReference’ 9, namedVariables" 9, "indexedVariables":0}1)
2024-05-97 08:36:22,386 (1o-compute-blocker-10] INFO. 0.3.d.d.4.08%5ession - <R #10 variables success ("variables:[("nane" "hEtp: //how.ogF.org/af
o 41/641-1.0/", "value": ", variablesteference" 4, “namedVariables)
2024-05-07 08:36:22,389 [10-compute-blocker-10] TFO_0.0.d.d.d.DAPSession - R 811 variables success {*Voriables":[("none” "bytePos1b", "volue'
—— -, type":“number, "variablesReference” 8, "nanedVariables" 9, ndexedvariables
> s

rId107.png
Fle Gt Seecton View Go Fun Temol

b

“ I r————

R ——

ot el e ot

prstirivey e -4 006 16110 xsens o™ i "R 3o/ 2001 O ehems” el 1
e sodelar .\

L.\ \re328souncelreponsampleborkspace\google. o0

<o ducuments
aosiictalintoses ypentile”s
LA Arasouncelrepol somplesorkspace\targetinosetxal
<insiidiatintosets
<insicparsertestcases
mstctestsuiter

nlns 3D oo ong/ 0601/ 6661-1.8/ el 3=urncopf 0FdL 0L3: e oL apache.
FirnioRt afel: 00 rdatiosil apache.

\rCa38source\epot\ssaplehorkspace\ong 1. xid* rounTripe"anePass” descriptions-Generated by

oeoe - o x
Koearon s @ B8 B 0

rId110.png
Fle Gt siecon View Go Run Tams

0 sston
s ey
» prgétnd

e

S [pe—

CTamd verstons“1.0° encodings"UTE-8" standalones®yes*?>
3 ContitestSuste xalnsusie heep: /. bm. con i 6401 e t0nts™

xnlns 2D p e 00 G401/ 04611.0/ xmlns:ns3e"urn:ogf: 4012013 T TIRTISH L o
e oo/ 001 O wnlns nsba g 2L 2013 ap1OnFi1 o

ord 2018 xt” el i heep o opforg 481 G810 extensions~ xalns xoe

Grg.20L8LAnK" usteamen DefauLt TeSt Chse defauItROINTripe-onePass®s
estcase nanes e Test Cose” rota” il

VLt s20seurce\repet\saspleborkspacelgoogle-sng

. [—
w castiaralintoses ypenciilens

n L.\ \re328sourcelreponsamlorkspace\targetinfoset al
n <insi-eratingosets

1 gmstitestsuiter

B5 €\ners\rimmss\ ez repoi\ssmplerkipaces

odela”. . . \FE320s0urce\repo\sanpleborkspace\ong. . xd rounTip

oot + D @ = A x

rId113.png
Fle E81 Seecion View Go Run Temna Help - [r————— CEEEEEEE

oesron - © 8 B D

X et 3 ol versions™L.6" ancodings"UTF-8" standalones”yes™>
oy 2 Cos3itestSuite xelnsos1e heepc . . com/ 96615 E0BES" Al 2a”hESp: oo org 6L G811/ XL 3e"urnoRF4FEL: 2013+ fodsL apache.
rg:201810xt xelnsnsia"NERD: O o G601 674110 extenskons” s xbe hEEpE e 43-Crg 200U DUSchena” xalnsnsia-urn-ogt-afa 2013 aprantioail spache. |

- orgiasnsine switehanes L GrfaultRounaTripe-onepass®s
ounchson 3 et ,.m,u,um Foote"file" modelar. \..\..\rt320s0urce\repol\samplokorkspace\png. 66l xsd" roundTripa"onepsss” descriptions”Generated by

. LA et reponsamploarspace\oele o
0 e : premesmig '
prn— it L Arabsounce st ssplekrkspactarecynfose ol
donttor s i ansiiorintots
o o0 2 51162551462 1 mimrsertestcase
s B rmmarerrestcats e a1 R0l . .. BRGNSl rKSPRCG, 81 FondTpaaness”
e oo I 5 2 cesciotione"Genrased by DTS eI S
 gerng i SRR ———
» LLAUALAL Aresaearcelrepossmplowriopace argenfoset sk
. ansiiorintoess

6 miipaseesicase
7 amiitestsuites

75 Co\vsertonss\et3zbscurcelrepot\samplerkipaces

rId116.png

rId119.png
P E——_— B —— el

TOML Test Cases

rId122.png
X i G Seecn Vew Go A T 4 omrpmp x
Ot TOML Test Cases

rId125.png
e @ P Tt 100 £ R —— CE)
em-

e i 8 tmcstonss

- Freewes

rId20.svgz

 image/svg+xml

rId30.png
X Fe GG e Vew Go R Temesl Wb

16 smle et o 1)

A

R Entes /S e Sl epth) 10 + SH v »

e, “oresh)

P = e e

) e

Ao e

rId57.png
Log File:

Log Level:

DAP Server.

atically stop after launch.

Trace:
¥ Enable logging of the Debug Adapter Protocol.

Daffodil Debugger Classpath:

rId63.png
“request”: "launch”,

“path”: "c:\\Users\ (i EENIINNR \ \sanpleliorkspace\\G
“"rootName”: rl,
“rootNamespac g null Defa

3 & Application Extension

“"data”: "${worksp &P Block Terminator

“debugServer”: 47 P Byte-Sub-block

“infosetFormat”: & Comment Extension

“infosetoutput”: & GIF

ile P Global Color Table

${wo & Graphics_Control Extension

& Header

"tdmlConfig": { ° Image Data

"ge & Image Descriptor Minus First Two Bytes

unde & Local Color Table

rId69.png
Ln2,Col1 TabSize4 UTF-8 LF dfdl Pos39

rId79.png
B

D %7 % o @

2

File Edit Selection View Go Run Terminal Help =
DAFFODIL EXPLORER: COMMANDS VIEW (&)
{} Debug File extension.dfdi-debug.debugEditorContents >
{} RunFile extension.dfdl-debug.runEditorContents Daffodil

{} Debug Last File extension.dfdl-debug debugLastEditorContents
{} Append TDML extension.dfdl-debug.appendTDML
{} Execute TDML extension.dfdi-debug.executeTDML
{} Copy TDML File extension.dfdl-debug.copyTDML
{} Configure launchjson launch.config

{} Data Editor extension data.edit

{} Go to position position.goto

{} Delete Resource tdml-editor.deleteTest

{} Add New Test tdml-editor.addNewTest

{} Open in Text Editor tdml-editor.openinTextEditor
{} Open Preview tdml-editor.openPreview

{} Open in TDML Editor tdml-editor.openinTdmiEditor

rId83.png

rId86.png

rId89.png

rId92.png
0 Fe St Seaton Vew Go hn Temes b ¢

e e e e 20 s

rId95.png
0 rie G Seecon Vew Go R Temed Mg ¢ [—— Lo x

(R S— O

rId98.png

